Power Amplifier Principles and Modern Design Techniques
نویسندگان
چکیده
Enabled by Lee de Forest's invention of the vacuum tube triode in 1906, power amplification of electrical signals has played a key function in electronic systems ever since. Mundane devices we take for granted such as the telephone, the radio, or the television would not exist without this capability. Given such a wide application space, it is not surprising that early on electrical engineers have worked out the details of designing good power amplifiers (PAs), first with vacuum tubes, and then with discrete transistors [1]. They did such a fine job that by the second part of the twentieth century, the art of designing PAs became a mature electrical engineering (EE) specialty, which seemed to have little room left for breakthroughs or major innovations. However, the late-century market explosion of mobile digital communication systems and devices, such as cellular phones and wireless local area networks (LANs), and the massive introduction of integrated circuit (Ie) technology in everyday life have changed the electronic landscape dramatically, opening new challenges and opportunities for PAs. In this chapter, the issues and appropriate techniques for modern PAs are discussed, focusing on Ie implementations for wireless communication systems. To familiarize the reader with the general PA design approach, which is rather different from the regular analog circuit approach, a few important points are clarified, as a prerequisite for the following material. Then, the classical theory of PA design in the case of constant magnitude signals is reviewed and the trade-offs for different classes of transistor operation are pointed out. The important class AB case is discussed in more details. Next, the PA design problem from a unified, general point of view based on the internal PA signal harmonic content is revisited. This will give the reader a further insight into the PA design problem and high-level solution possibilities. The following section concerns the important topic of efficiency in the presence of back-off and briefly mentions other important design considerations. Finally, recent PA results are reviewed and conclusions drawn.
منابع مشابه
Nonlinear Analysis of a Power Amplifier inc C Band and Load Pull Technique Calculation USING VOLTERRA SERIES
In recent years, nonlinear circuit analysis techniques have been extensively investigated. One of the most important reasons is the application development of solid-state devices at microwave frequencies. Different methods have been used to analysis large signal behavior of these devices. In this paper load-pull curves (one of design requirement) are obtained using Volterra series. The main adv...
متن کاملA 28-36 GHz Optimized CMOS Distributed Doherty Power Amplifier with A New Wideband Power Divider Structure
Background and Objectives: In this paper, a new design strategy was proposed in order to enhance bandwidth and efficiency of power amplifier. Methods: To realize the introduced design strategy, a power amplifier was designed using TSMC CMOS 0.18um technology for operating in the Ka band, i.e. the frequency range of 26.5-40GHz. To design the power amplifier, first a power divider (PD) with a ver...
متن کاملEffective Design of a 3×4 Two Dimensional Distributed Amplifier Based on Gate Line Considerations
In this paper two dimensional wave propagation is used for power combining in drain nodes of a distributed amplifier (DA). The proposed two dimensional DA uses an electrical funnel to add the currents of drain nodes. The proposed structure is modified due to gate lines considerations. Total gain improvement is achieved by engineering the characteristic impedance of gate lines and also make appr...
متن کاملNon-linear modeling, analysis, design and simulation of a solid state power amplifier based on GaN technology for Ku band microwave application
A new non-linear method for design and analysis of solid state power amplifiers is presented and applied to an aluminum gallium nitride, gallium nitride (AlGaN-GaN) high electron-mobility transistor (HEMTs) on silicon-carbide (SiC) substrate for Ku band (12.4 13.6 GHz) applications. With combining output power of 8 transistors, maximum output power of 46.3 dBm (42.6 W), PAE of 43% and linear ga...
متن کاملDesign of X Band High Power Amplifier MMIC Based on AlGaN/GaN HEMT
In this paper, we have presented an X band high power amplifier based on MMIC (Monolithic Microwave Integrated Circuit) technology for satellite remote sensing systems. We have used GaN HEMT process with 500 nm gate length technology with VD= 40 V and VG= -2 V in class E structure. The proposed two-stage power amplifier provides 25 dB power gain with maximum output power of 49.3 dBm at 10 GHz. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010